Sains Malaysiana 54(11)(2025): 2733-2744

http://doi.org/10.17576/jsm-2025-5411-13

 

Direct Oxidation of Various Oil Palm Components using CeO Catalyst for Vanillin Production

(Pengoksidaan Langsung Pelbagai Komponen Kelapa Sawit menggunakan Pemangkin CeO untuk Pengeluaran Vanilin)

 

ANITA RAMLI1,2,*, NUR AKILA SYAKIDA IDAYU KHAIRUL ANUAR1,2, FARINAA MD JAMIL1,2, NAJMAN NAQIB KAMARUZAMAN2, NURAZIEDA DAYANA ROZI2, CHAM HUI JING2, FARAH ANIS SYAFIQAH MD FARIZAL2 & NUR MASITAH LAILY ZAMRI2

 

1HICoE Centre of Biofuel and Biochemical Research, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
2Department of Applied Science, Universiti Tekknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia

 

Received: 28 April 2025/Accepted: 30 September 2025

 

Abstract

Vanillin has a significant market demand as it is consumed as raw materials in many daily products such as fragrances and pharmaceuticals. The supply chain is dominated by synthetic vanillin due to its preferred pathway and cost-effective manufacturing. The different palm oil biomass feedstocks, including fronds, trunks, empty fruit bunches, kernel shells, and mesocarp fibers, were evaluated to determine which one yields the highest vanillin composition by employed CeO2 nanoparticles as catalyst. The physicochemical properties of the catalyst were characterized using X-ray diffraction, N₂ adsorption-desorption, temperature-programmed oxidation (TPO), and temperature-programmed reduction (TPR) analyses to assess the crystallinity, textural properties, and redox behavior of the CeO2 nanoparticles. The synthesized CeO2 nanoparticles showed the presence of diffraction peaks assigned to the presence of cubic fluorite. The N2 adsorption–desorption isotherms showed that all catalysts possess a Type IV isotherm, indicating a mesoporous structure. From the TPO and TPR profiles, both surface and bulk oxygen species suggest that surface oxygen vacancies play a key role in adsorbing and activating oxygen molecules, leading to a high rate of adsorbed oxygen formation. A direct oxidation method via microwave irradiation with the presence of a nanoparticle catalyst was used to assist the lignin derivation to vanillin production. A test done for all waste samples showed that mesocarp fiber gives the highest vanillin yield of at 6.74% from the direct oxidation method and 11.93% from the lignin extraction method.

Keywords: Direct oxidation; palm oil; vanillin

 

Abstrak

Vanilin mempunyai permintaan pasaran yang tinggi sebagai bahan mentah dalam pelbagai produk harian seperti wanigan dan farmaseutikal. Rantaian bekalan vanilin didominasi oleh vanilin sintetik kerana proses penghasilannya lebih digemari serta kos pembuatan yang berkesan. Fokus projek ini adalah untuk memanfaatkan penggunaan biojisim minyak sawit dari Malaysia, sebagai pengeluar utama bahan mentah. Setiap bahagian biojisim minyak sawit seperti pelepah, batang, tandan kosong, tempurung biji dan serat mesokarp, telah dinilai bagi menentukan bahagian yang menghasilkan kandungan vanilin tertinggi. Kaedah pengoksidaan secara langsung melalui pancaran gelombang mikro dengan kehadiran pemangkin cerium(IV) oksida nanozarah telah digunakan untuk membantu penghasilan sintetik vanilin daripada lignin. Keputusan kajian yang dijalankan terhadap semua sampel sisa mendapati bahawa serat mesokarp menghasilkan vanilin tertinggi, iaitu 6.74% melalui kaedah pengoksidaan secara langsung dan 11.93% melalui kaedah pengekstrakan lignin.

Kata kunci: Minyak sawit; pengoksidaan secara langsung; vanilin

 

REFERENCES

Anita Ramli, Nur Akila Syakida Idayu Khairul Anuar, Normawati Mohamad Yunus & Alina Rahayu Mohamed. 2024. Synthesis of vanillin via oxidation of kenaf stalks in the presence of CeO2: Tuning the catalytic behaviour of CeO2 via nanostructure morphology. RSC Advances 14(49): 36327-36339.

Anita Ramli, Nur Akila Syakida Idayu Khairul Anuar, Nur Aielia Amira Bakhtiar, Normawati Mohamad Yunus & Alina Rahayu Mohamed. 2023. Direct oxidation of Hibiscus cannabinus stalks to vanillin using CeO2 nanostructure catalysts. Molecules 28(13): 4963.

Araújo, J.D., Grande, C.A. & Rodrigues, A.E. 2010. Vanillin production from lignin oxidation in a batch reactor. Chemical Engineering Research and Design 88(8): 1024-1032.

Awoke, Y., Chebude, Y. & Díaz, I. 2020. Controlling particle morphology and pore size in the synthesis of ordered mesoporous materials. Molecules 25(21): 4909.

Azizah, N., Suhartini, S. & Nurika, I. 2021. Optimization of vanillin extraction from biodegradation of oil palm empty fruit bunches by Serpula lacrymans. Industria Jurnal Teknologi dan Manajemen Agroindustri 10(1): 33-40.

Badamali, S.K., Luque, R., Clark, J.H. & Breeden, S.W. 2013. Unprecedented oxidative properties of mesoporous silica materials: Towards microwave-assisted oxidation of lignin model compounds. Catalysis Communications 31: 1-4.

Barbosa, B.M., Vaz Jr., S., Colodette, J.L., de Aguiar, A.R., Távora Cabral, C.P. & de Freitas Homem de, B. 2022. Structural and chemical characterization of lignin and hemicellulose isolated from corn fibers toward agroindustrial residue valorization. Cellulose 29(15): 8117-8132.

Behling, R., Valange, S. & Chatel, G. 2016. Heterogeneous catalytic oxidation for lignin valorization into valuable chemicals: What results? What limitations? What trends? Green Chemistry 18(7): 1839-1854.

Boerjan, W., Ralph, J. & Baucher, M. 2003. Lignin biosynthesis. Annual Review of Plant Biology 54(1): 519-546.

Carvalho, D.M. & Colodette, J.L. 2017. Comparative study of acid hydrolysis of lignin and polysaccharides in biomasses. BioResources 12(4): 6907-6923.

Chan, E.S. & Gourich, W. 2024. Palm oil: From environmental villain to climate hero. Malay Mail, August 16.

Chantanumat, Y., Phetwarotai, W., Sangthong, S., Palamanit, A., Abu Bakar, M.S., Cheirsilp, B. & Phusunti, N. 2023. Characterization of bio-oil and biochar from slow pyrolysis of oil palm plantation and palm oil mill wastes. Biomass Conversion and Biorefinery 13: 13813-13825.

D’Arrigo, P., Rossato, L.A.M., Strini, A. & Serra, S. 2024. From waste to value: Recent insights into producing vanillin from lignin. Molecules 29(2): 442.

Dong, Y.G., Kong, W.J., Ma, Z., Yang, Y., Wang, P., Sheng, S.X., Dong, L., Gu, X.L. & Chen, Z.P. 2025. Insight into the morphology-dependent CeO2 for oxidation of lignin model compounds via C–C bond cleavage. Rare Metals 44: 4767-4778.

Fache, M., Boutevin, B. & Caillol, S. 2015. Vanillin production from lignin and its use as a renewable chemical. ACS Sustainable Chemistry & Engineering 4(1): 35-46.

Gitaari, N., Benard, K., Gichuki, J. & Kareru, P. 2019. Synthesis of vanillin from lignin. Chemical Science International Journal 27(1): 1-5.

Han, Z., Liu, W. & Gao, Y. 2025. Advancing the understanding of oxygen vacancies in ceria: Insights into their formation, behavior, and catalytic roles. JACS Au 5: 1549-1569.

Hifza Rouf, Anita Ramli, Nur Akila Syakida Idayu Khairul Anuar & Normawati Mohamad Yunus. 2023. Ce–Zr-based mixed oxide catalyst for oxidative depolymerization of kenaf stalk (biomass) into vanillin. Bioresources and Bioprocessing 10: 76.

Hsiao, W., Lin, Y., Chen, Y. & Lee, C. 2007. The effect of the morphology of nanocrystalline CeO2 on ethanol reforming. Chemical Physics Letters 441(4-6): 294-299.

Islam, M.K., Kongparakul, S., Guan, G., Chanlek, N. & Samart, C. 2025. Oxidative fractionation of palm kernel shell waste biomass over bimetallic Co-Cu/Zeolite HY catalyst. Biomass and Bioenergy 193: 107609.

Jayakumar, G., Irudayaraj, A.A. & Raj, A.D. 2017. Particle size effect on the properties of cerium oxide (CeO2) nanoparticles synthesized by hydrothermal method. Mechanics, Materials Science & Engineering Journal9: doi:10.2412/mmse.3.4.481

Jazi, M.E., Narayanan, G., Aghabozorgi, F., Farajidizaji, B., Aghaei, A., Kamyabi, M.A., Navarathna, C.M. & Mlsna, T.E. 2019. Structure, chemistry, and physicochemistry of lignin for material functionalization. SN Applied Sciences 1: 1094.

Jian, Y., Meng, Y. & Hu, L. 2022. Selectivity control of C-O bond cleavage for catalytic biomass valorization. Frontiers in Energy Research 9: 827680.

Kartigaa, H. 2018. Synthesis of renewable vanillin from pineapple leaves lignin. FYP Dissertation. Universiti Teknologi PETRONAS (Unpublished).

Kawamoto, H., Horigoshi, S. & Saka, S. 2007. Pyrolysis reactions of various lignin model dimers. Journal of Wood Science 53(2): 168-174.

Li, M. & Wilkins, M. 2020. Lignin bioconversion into valuable products: Fractionation, depolymerization, aromatic compound conversion, and bioproduct formation. Systems Microbiology and Biomanufacturing 1(2): 166–185.

Li, J., Zhou, S., Wan, Q., Guo, H. & Lin, S. 2024. Elucidating the intrinsic relationship between redox properties of CeO2 and CH4 oxidation activity: A theoretical perspective. The Journal of Chemical Physics 161(17): 174707.

Li, T. & Takkellapati, S. 2018. The current and emerging sources of technical lignins and their applications. Biofuels Bioproducts and Biorefining 12(5): 756-787.

Li, Y., Shuai, L., Kim, H., Motagamwala, A.H., Mobley, J.K., Yue, F., Tobimatsu, Y., Havkin-Frenkel, D., Chen, F., Dixon, R.A., Luterbacher, J.S., Dumesic, J.A. & Ralph, J. 2018. An “ideal lignin” facilitates full biomass utilization. Science Advances 4(9). https://doi.org/10.1126/sciadv.aau2968

Liu, Q., Yang, D., Zhao, X., Xu, Z., Ding, J., Wu, D., An, N., Liao, H. & Hou, Z. 2024. Oxidative cleavage of β-O-4 bonds in lignin model compounds with polymer-supported Ni–Salen catalysts. RSC Sustainability 2: 3397-3408.

Lourenço, A. & Pereira, H. 2018. Compositional variability of lignin in biomass. In Lignin - Trends and Applications. pp. 65-98. http://dx.doi.org/10.5772/intechopen.71208

Lykaki, M., Stefa, S., Carabineiro, S., Pandis, P., Stathopoulos, V. & Konsolakis, M. 2019. Facet-dependent reactivity of Fe2O3/CeO2 nanocomposites: Effect of ceria morphology on CO oxidation. Catalysts 9(4): 371.

Malaysian Investment Development Authority (MIDA). 2024. Diverse biomass components in Malaysia's palm oil industry. Food technology - Palm biomass.

Norzita Ngadi, Noor Amirah Abdul Halim & Mohammad Nasir Mohamad Ibrahim. 2014. Isolation and characterization of vanillin from coconut husk lignin via alkaline nitrobenzene oxidation. Jurnal Teknologi 67(4): 19-23.

Nur Akila Syakida Idayu Khairul Anuar, Anita Ramli & Lim Jun Wei. 2021. Synthesis of Ce/MgO catalysts for direct oxidation of Hibiscus cannabinus stalks to vanillin. Catalysts 11(12): 1449.

Pérez, E., Abad-Fernández, N., Lourençon, T., Balakshin, M., Sixta, H. & Cocero, M.J. 2022. Base-catalysed depolymerization of lignins in supercritical water: Influence of lignin nature and valorisation of pulping and biorefinery by-products. Biomass and Bioenergy 163: 106536.

Qu, C., Kaneko, M., Kashimura, K., Tanaka, K., Ozawa, S. & Watanabe, T. 2017. Direct production of vanillin from wood particles by copper oxide–peroxide reaction promoted by electric and magnetic fields of microwaves. ACS Sustainable Chemistry & Engineering 5(12): 11551-11557.

Ranga Rao, G. & Mishra, B.G. 2003. Structural, redox, and catalytic chemistry of ceria-based materials. Bulletin of Catalysis Society of India 2: 122-134.

Rezaei, P.S., Shafaghat, H. & Wan Daud, W.M.A. 2015. Aromatic hydrocarbon production by catalytic pyrolysis of palm kernel shell waste using a bifunctional Fe/H-Beta catalyst: Effect of lignin-derived phenolics on zeolite deactivation. Green Chemistry 18(6): 1684-1693.

Rodrigues Pinto, P.C., Borges da Silva, E.A. & Rodrigues, A.E. 2012. Lignin as source of fine chemicals: Vanillin and syringaldehyde. In Biomass Conversion, edited by Baskar, C., Baskar, S. & Dhillon, R. Springer, Berlin, Heidelberg. pp. 381-420.

Romero Pelaez, R.D., Oliveira, M.E.C., Miller, R.N.G., Almeida, J.R.M. & de Siqueira, F.G. 2024. Biotechnological valorization of lignocellulosic residues from the oil palm industry: Status and perspectives. Biomass Conversion and Biorefinery 14: 3077-3099.

Sheraz, M., Cao, L., Zhao, S., Gao, H., Dansawad, P., Xue, C., Li, Y. & Li, W. 2025. Lignocellulosic biomass pretreatment methods and application of extracted fractions. Arabian Journal for Science and Engineering 50: 3717-336.

Sikorska, J. 2022. Vanillin and its applications in the food and pharmaceutical industries. Foodcom S.A. https://foodcom.pl/en/vanillin-and-its-applications-in-the-food-and-pharmaceutical-industries/

Tana, Zhang, M., Li, J., Li, H., Li, Y. & Shen, W. 2009. Morphology-dependent redox and catalytic properties of CeO2 nanostructures: Nanowires, nanorods, and nanoparticles. Catalysis Today 148: 179-183.

Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J. & Sing, K.S.W. 2015. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry 87(9-10): 1051-1069.

Tok, A., Du, S., Boey, F. & Chong, W. 2007. Hydrothermal synthesis and characterization of rare earth doped ceria nanoparticles. Materials Science and Engineering A 466(1-2): 223-229.

Walton, N.J., Mayer, M.J. & Narbad, A. 2003. Vanillin. Phytochemistry 63(5): 505-515.

Wang, H., Zou, Y., Sun, H., Chen, Y., Li, S. & Lan, Y. 2021. Recent progress and perspectives in heterogeneous photocatalytic CO2 reduction through a solid-gas mode. Coordination Chemistry Reviews 438: 213906.

Wang, H., Pu, Y., Ragauskas, A. & Yang, B. 2019. From lignin to valuable products-strategies, challenges, and prospects. Bioresource Technology 271: 449-461.

Wu, G. & Heitz, M. 1995. Catalytic mechanism of Cu2+ and Fe3+ in alkaline O2 oxidation of lignin. Journal of Wood Chemistry and Technology 15(2): 189-202.

Vega-Aguilar, C.A., Barreiro, M.F. & Rodrigues, A.E. 2021. Lignin conversion into C4 dicarboxylic acids by catalytic wet peroxide oxidation using titanium silicalite-1. Industrial Crops and Products 173: 114155.

Ying, W., Shi, Z., Yang, H., Xu, G., Zheng, Z. & Yang, J. 2018. Effect of alkaline lignin modification on cellulase–Lignin interactions and enzymatic saccharification yield. Biotechnology for Biofuels 11: 214.

Zakaria, S.M., Idris, A., Chandrasekaram, K., Darji, D. & Alias, Y. 2023. Rice husk lignin to vanillin: IonoSolv as a way forward for value-added biomass depolymerization. BioResources 18(3): 5385-5398.

Zhang, G., Zhou, Y., Yang, Y., Kong, T., Song, Y., Zhang, S. & Zheng, H. 2023. Elucidating the role of surface Ce4+ and oxygen vacancies of CeO2 in catalytic activity. Molecules 28(9): 3785.

 

*Corresponding author; email: anita_ramli@utp.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous

next